50=-16t^2-20t+180

Simple and best practice solution for 50=-16t^2-20t+180 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 50=-16t^2-20t+180 equation:



50=-16t^2-20t+180
We move all terms to the left:
50-(-16t^2-20t+180)=0
We get rid of parentheses
16t^2+20t-180+50=0
We add all the numbers together, and all the variables
16t^2+20t-130=0
a = 16; b = 20; c = -130;
Δ = b2-4ac
Δ = 202-4·16·(-130)
Δ = 8720
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{8720}=\sqrt{16*545}=\sqrt{16}*\sqrt{545}=4\sqrt{545}$
$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(20)-4\sqrt{545}}{2*16}=\frac{-20-4\sqrt{545}}{32} $
$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(20)+4\sqrt{545}}{2*16}=\frac{-20+4\sqrt{545}}{32} $

See similar equations:

| 2x²+7x+36=0 | | 2x² + 17x + 36 = 0 | | 180=5x+(x+7.2) | | 4x-0.2=1.5 | | 14=2-3(a-15) | | 180=5x+x+7.2 | | -6x-7(6x-2)=322 | | 4(x-9)-3(2x-1=) | | 3(2x+4)-3(x+12=) | | (3x+4)-2(3x+10=) | | (3x+9)+99=180 | | 3r-46+r=32 | | 2.4x+x=0.2 | | (2x+1)=57 | | 6x-20+3x+7=5 | | -x-3=-x+5 | | (2x+1)+57=58 | | (5x+1)+(1+6x)=90 | | 2-5(25b-40)=1-4(16b+8) | | 3f-(1/6)=1f+(1/3) | | 39+(2x+1)=58 | | 2-3x-6=2 | | 2.5f-28=15 | | 4x+(3x+6)=90 | | –11+7r=6r | | S=2p+64 | | S=2p+54 | | m/840=1/120 | | 63+9x=198 | | -4d+3=-2 | | 6x+22=12+14 | | 5x+64+x+36=6x+4 |

Equations solver categories